Insane in the membrane - inflamed in the brain

Green and red fluorescent cells allow the visualization of brain inflammation in status Read more

Flow mediated dilation

Demonstration of flow-mediated dilation, a test of endothelial function. Impaired endothelial function is an early stage in the process of Read more

Nutty stimulant revealed as anticancer tool

Areca nuts are chewed for their stimulant effects in many Asian countries. Analogous to nicotine, arecoline was identified in a chemical screen as an enzyme inhibitor that thwarts the Warburg effect in cancer Read more

SIV remission follow-up

The surprising finding that an antibody treatment can push SIV-infected monkeys into prolonged remission, even after antiviral drugs are stopped, continues to rumble across the internet.

siv-a4b7-teaser-copy

Blue circles show how viral levels stayed low even after antiretroviral drugs were stopped.

The Science paper was featured on NIH director Francis Collins’ blog this week. NIAID director Anthony Fauci has been giving presentations on the research, which emerged from a collaboration from his lab and Tab Ansari’s at Emory. Fauci’s talk at the recent HIV prevention meeting in Chicago is viewable here.

At Lab Land, we were pleased to see that the watchdogs at Treatment Action Group had this to say:

“Media coverage of the paper has generally been accurate, but has had to wrestle with the uncertainty that exists among scientists regarding how ART-free control of viral load should be described.”

HIV pioneer Robert Gallo noted in an article accompanying the Science paper that the anti-integrin antibody treatment represents an emerging alternative to the vaunted “shock and kill” strategy, which he termed “soothe and snooze.” Note to reporters: the upcoming “Strategies for an HIV cure” conference at NIH in mid-November might be a good chance to compare the different strategies and put them in perspective.

Read more

Posted on by Quinn Eastman in Immunology Leave a comment

Blood versus the crypts

Amielle Moreno

For Halloween, Lab Land welcomes a guest post from Neuroscience graduate student Amielle Moreno, former editor of the Central Sulcus newsletter.

While recent studies have found evidence for the healing properties of blood from younger individuals, the fascination with “young blood” has been a part of the human condition for centuries.

In ancient Greece, Hippocrates introduced the concept that our health and temperament was controlled by the four humors, proposing that blood was the one responsible for courage, playfulness as well as hope. From the 16th century story of Countess Elizabeth Báthory de Ecsed of Hungary, the idea of “blood baths” acquired decidedly more sinister connotations.

The “Blood Countess” holds the Guinness World Record as the most prolific female murderer. With 80 confirmed kills, Báthory might have lured up to 650 peasant girls to her castle with the promise of work as maidservants or courtly training. Instead of etiquette lessons, they were burned, beaten, frozen or starved for the Countess’ sadistic pleasure. Folk stories told how she would bathe in the blood of virgins to preserve her youth and beauty.

Portrait if Elizabeth Bathory, via Wikimedia

Portrait if Elizabeth Bathory, via Wikimedia

Humors remained a staple of traditional western medicine until the 1800s when medical research and our modern concept of medicine emerged. In this more enlightened age, people started sewing animals together to see what would happen.

In the mid-1800s, a French zoologist named Paul Bert first experimented with the creation of parabionts: the surgical joining of two animals, usually two rodents of the same species, in order to study the effect of one’s blood on the other. Read more

Posted on by Quinn Eastman in Heart, Immunology, Neuro Leave a comment

Dengue infection makes exhausted T cells?

An ongoing collaboration between the Emory Vaccine Center and the ICGEB (International Centre for Genetic Engineering and Biotechnology) in New Delh, investigating immune responses to dengue virus, is getting some attention.

A Journal of Virology paper published by the collaboration was highlighted by Nature Asia. In that paper, the researchers show that in dengue infection, the group of antiviral immune cells known as CD8+ T cells undergoes a massive expansion. That could be dangerous if all of the CD8 T cells were making inflammatory cytokines, but they do not. Only a small fraction are making cytokines.

The authors point out that this phenomenon is “somewhat reminiscent of T-cell exhaustion seen under the conditions of prolonged antigenic stimulus in chronic viral infections [which has been studied in detail by Rafi Ahmed and colleagues] or closely resembles the ‘stunned’ phenotype reported in febrile phase of other acute infections such as HIV and viral hepatitis… The IFN-γ unresponsiveness acquired during the massive antigen-driven clonal expansion is likely to ensure that these cells do not cause excessive inflammation at the time that their numbers are high during the febrile phase of dengue disease.” Read more

Posted on by Quinn Eastman in Immunology Leave a comment

How metabolic syndrome interacts with stress – mouse model

Emory researchers recently published a paper in Brain, Behavior and Immunity on the interaction between psychological stress and diet-induced metabolic syndrome in a mouse model.

“The metabolic vulnerability and inflammation associated with conditions present in metabolic syndrome may share common risk factors with mood disorders. In particular, an increased inflammatory state is recognized to be one of the main mechanisms promoting depression,” writes lead author Betty Rodrigues, a postdoc in Malu Tansey’s lab in the Department of Physiology.

This model may be useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. As a follow-up, Tansey reports that her team is investigating the protective effects of an anti-inflammatory agent on both the brain and the liver using the same model.

Metabolic syndrome and stress have a complex interplay throughout the body, the researchers found. For example, psychological stress by itself does not affect insulin or cholesterol levels, but it does augment them when combined with a high-fat, high-fructose diet. In contrast, stress promotes adaptive anti-inflammatory markers in the hippocampus (part of the brain), but those changes are wiped out by a high-fat, high-fructose diet.

The findings show synergistic effects by diet and stress on gut permeability promoted by inflammation, and the biliverdin pathway. Biliverdin, a product of heme breakdown, is responsible for a greenish color sometimes seen in bruises.

“Stress and high-fat high-fructose diet promoted disturbances in biliverdin, a metabolite associated with insulin resistance,” Rodrigues writes. “To the best of our knowledge, our results reveal for the first time evidence for the synergistic effect of diet and chronic psychological stress affecting the biliverdin pathway.”

Read more

Posted on by Quinn Eastman in Heart, Immunology, Neuro Leave a comment

Immunotherapy for triple negative breast cancer

Treatments that unleash the immune system against cancer have been a hot topic for the last few years, but they do not appear in our recent feature on breast cancer for Winship Cancer Institute’s magazine.

Partly, that’s because decent avenues for treatment exist for most types of breast cancer, with improvements in survival since the 1980s. Immunotherapy’s successes have been more dramatic for types of cancer against which progress had been otherwise meager, such as lung cancers and metastatic melanoma.

Jane Meisel, MD with patient

Winship oncologist Jane Meisel, MD with patient

However, for “triple-negative” breast cancer (TNBC) in particular, immunotherapy could be a good match, because of the scarcity of targeted treatments and because TNBC’s genomic instability may be well-suited to immunotherapy.

Winship oncologists Jane Meisel and Keerthi Gogineni inform Lab Land that several early-phase clinical studies open to breast cancer patients, testing “checkpoint inhibitor” agents such as PD-1 inhibitors, are underway. More are pending.

Meisel’s presentation at Winship’s Sea Island retreat says that immunotherapy is “not yet ready for prime time, but a very promising experimental approach for a subset of patients for whom current therapies are not sufficient. We need to better understand which subsets of patients are most likely to benefit, and how we can use other therapies to enhance efficacy in patients who don’t initially respond.”

Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Retaining the resistance: MCR-1, colistin + lysozyme

If you’ve been following the news about antibiotic resistant bacteria, you may have heard about a particularly alarming plasmid: MCR-1. A plasmid is a circle of DNA that is relatively small and mobile – an easy way for genetic information to spread between bacteria. MCR-1 raises concern because it provides bacteria resistance against the last-resort antibiotic colistin. The CDC reports MCR-1 was found in both patients and livestock in the United States this summer.
David Weiss, director of Emory’s Antibiotic Resistance Center, and colleagues have a short letter in The Lancet Infectious Diseases showing that MCR-1 also confers resistance to an antimicrobial enzyme produced by our bodies called lysozyme. MCR-1-containing strains were 5 to 20 times less susceptible to lysozyme, they report.
This suggests that the pressure of fighting the host immune system may select for MCR-1 to stick around, even in the absence of colistin use, the authors say.
While the findings are straightforward in bacterial culture, Weiss cautions that there is not yet evidence showing that this mechanism occurs in live hosts. For those that really want to get alarmed, he also calls attention to a recent Nature Microbiology paper describing a hybrid plasmid with both MCR-1 and resistance to carbapenem, another antibiotic.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Let’s not elope

Elopement may sound cute, because the word evokes a starry-eyed couple running away to get married. Elopement also refers to when a child runs or wanders from a safe, supervised environment. It can be a worrisome concern among the parents and caregivers of children with autism spectrum disorder and/or intellectual disability.

Here is a straightforward post from Seattle Children’s on elopement. Cathy Rice, now director of Emory Autism Center and previously at the CDC, has published two papers on elopement.

This May, Nathan Call, director of Severe Behavior Programs at Marcus Autism Center, and colleagues published a retrospective review of their behavioral treatments for elopement, extending back to 2003. This is a companion to their 2015 analysis of treatment for pica, the ingestion of inedible substances. Call is also assistant professor of pediatrics at Emory University School of Medicine.

He summarized their approach by saying: “Individualizing treatment based upon the reason each child elopes seems to work very well.” The paper makes it clear that the reasons for a child eloping were a mixed bag: for some it was “access to preferred tangible items,” for others it was access to attention or other reasons.

Elopement can be difficult to study scientifically because the consequences of just letting it happen may be disastrous. In an interview, Call described one child who was attracted by balloons. He eloped so readily that he had been struck by cars twice, one time because he was drawn to a balloon display at a nearby apartment complex.

The 11 children in the review were ages 5 to 12, and 7 had a diagnosis of autism spectrum disorder – others had Down syndrome or intellectual disability. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Background links on SIV remission Science paper

This was the first consistent demonstration of post-treatment immune control in monkeys infected with SIV, without previous vaccination. Long-term post-treatment control of HIV has been reported in only a handful of people treated soon after infection. To learn more, check out these links.

Transient SIVmac remission induced by TLR7 agonist, reported at 2016 CROI conference

Immune control of SIVagm, no antiretroviral drugs necessary. Model of “elite controllers.”

Immune clearance of SIVmac; prior CMV-based vaccination necessary.

Post-treatment control of HIV – VISCONTI study. Roundup of HIV remission cases, from Treatment Action Group. Read more

Posted on by Quinn Eastman in Immunology Leave a comment

A glimpse into the genetics of positive emotions

 

Happiness can be elusive, both in personal life and as a scientific concept. That’s why this paper, recently published in Molecular Psychiatry, seemed so striking.

A genome-wide association study of positive emotion identifies a genetic variant and a role for microRNAs.” Translation: a glimpse into the genetics of positive emotions.

Editorial note: Although the research team here is careful and confirms the findings in independent groups and in brain imaging and fear discrimination experiments, this is a preliminary result. More needs to be explored about how these genetic variants and others affect positive emotions.

“With relatively few studies on genetic underpinnings of positive emotions, we face the challenges of a nascent research area,” the authors write.

Perhaps ironically, the finding comes out of the Grady Trauma Project, a study of inner-city residents exposed to high rates of abuse and violence, aimed at understanding mechanisms of resilience and vulnerability in depression and PTSD.

“Resilience is a multidimensional phenomenon, and we were looking at just one aspect of it,” says first author Aliza Wingo. She worked with Kerry Ressler , now at Harvard, and Tanja Jovanovic and other members of the Grady Trauma Project team.

“Positive affect” is what the team was measuring, through responses on questionnaires. And the questions are asking for the extent that respondents feel a particular positive emotion in general, rather than that day or that week. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

Gestational age estimated via DNA methylation

Researchers have developed a method for estimating developmental maturity of newborns. It is based on tracking DNA methylation, a structural modification of DNA, whose patterns change as development progresses before birth.

The new method could help doctors assess developmental maturity in preterm newborns and make decisions about their care, or estimate the time since conception for a woman who does not receive prenatal care during pregnancy. As a research tool, the method could help scientists study connections between the prenatal environment and health in early childhood and adulthood.

How advanced is the development of a newborn, possibly preterm baby? Geneticists have developed a method for estimating gestational age by looking at DNA methylation.

The study, led by Alicia Smith, PhD and Karen Conneely, PhD, used blood samples from more than 1,200 newborns in 15 cohorts from around the world. The results are published in Genome Biology.

Smith is an associate professor and vice chair of research for the Department of Gynecology and Obstetrics in the School of Medicine, and Conneely is an assistant professor in the Department of Human Genetics. The first author, Anna Knight, is a graduate student in the Genetics and Molecular Biology Program.

Gestational age, is normally estimated by obstetricians using ultrasound during the first trimester, by asking a pregnant woman about her last menstrual period, or by examining the baby at birth. Ultrasound is considered to be the most precise estimate of gestational age. This work extends upon earlier studies of DNA methylation patterns that change over development and predict age and age-related health conditions in children and adults.

The Emory team gathered DNA methylation data from previous studies examining live births and health outcomes, and used an unbiased statistical learning approach to select 148 DNA methylation sites out of many thousands in the genome. By examining methylation at those sites, gestational age could be accurately estimated between 24 and 44 weeks, the authors report. The median difference between age determined by DNA methylation and age determined by an obstetrician estimate was approximately 1 week.

The researchers also found that the difference between a newborn’s age predicted by DNA methylation and by an obstetrician may be another indicator of developmental maturity, and is correlated with birthweight, commonly used as an indicator of perinatal health. Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment