FMT microbial transplant for C diff gaining acceptance

The Infectious Diseases Society of America issued new guidelines for fighting C diff that include FMT (fecal microbiota Read more

Give a zap to Emory brain research for #STATMadness

Vote for Emory neuroscience research next week as part of Read more

Nox-ious link to cancer Warburg effect

Invitation from a talk by San Martin recently gave in Read more

Five hot projects at Emory in 2017

CRISPR-Cas9 gene editing alleviates Huntington’s in mouse model

— Shi-Hua and Xiao-Jiang Li. This project is progressing, with funding from NCATS and a pig-oriented collaboration with partners in China.

Once activated by cancer immunotherapy drugs, T cells still need fuel (CD28)

— Rafi Ahmed’s lab at Emory Vaccine Center. Also see T cell revival predicts lung cancer outcomes. At Thursday’s Winship symposium on cancer immunotherapy, Rafi said the name of the game is now combinations, with an especially good one being PD-1 inhibitors plus IL2.

Pilot study shows direct amygdala stimulation can enhance human memory

— Cory Inman, Joe Manns, Jon Willie. Effects being optimized, see SFN abstract.

Immune responses of five returning travelers infected by Zika virus

— Lilin Lai, Mark Mulligan. Covered here, Emory Hope Clinic and Baylor have data from more patients.

Frog slime kills flu virus

— Joshy Jacob’s lab at Emory Vaccine Center. A follow-up peptide with a name referencing Star Wars is coming.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Shaking up thermostable proteins

Imagine a shaker table, where kids can assemble a structure out of LEGO bricks and then subject it to a simulated earthquake. The objective is to design the most stable structure.

Biochemists face a similar task when they are attempting to design thermostable proteins, with heat analogous to shaking. Thermostable proteins, which do not become unfolded/denatured at high temperatures, are valuable for industrial processes.

Now imagine that these stable structures have to also perform a function. This is the two-part challenge of designing thermostable proteins. They have to maintain their physical structure, and continue to perform their function adequately, all at high temperatures. 

Eric Ortlund and colleagues, working with Eric Gaucher at Georgia Tech*, have a new paper published in Structure, in which they examine different ways to achieve this goal in a component of the protein synthesis machinery, EF-Tu. This protein exists in both mesophilic bacteria, which live at around human body temperature, and thermophilic organisms (think: hot springs).

A previous analysis by Gaucher used the ASR technique (ancestral sequence reconstruction) to resurrect ancient, extinct EF-Tus and characterize them. It was shown that that ancestral EF-Tus were thermostable and functional. EF-Tu’s thermostability declined along with the environmental temperature; ancestral bacteria started off living in hot environments and those environments cooled off over millions of years.

In the new paper, Ortlund and first author Denise Okafor show that stable proteins generated by protein engineering methods do not always retain their functional capabilities. However, the ASR technique has a unique advantage, Ortlund says. By accounting for the evolutionary history of the protein, it preserves the natural motions required for normal protein function. Their results suggest that ASR could be used to engineer thermostability in other proteins besides EF-Tu.

*Gaucher recently moved to Georgia State.

Posted on by Quinn Eastman in Uncategorized Leave a comment

A sickly sweet anticancer drug

Cancer cells are well known for liking the simple sugar glucose. Their elevated appetite for glucose is part of the Warburg effect, a metabolic distortion that has them sprinting all the time (glycolysis) despite the presence of oxygen.

A collaboration between researchers at Winship Cancer Institute, Georgia State and University of Mississippi has identified a potential drug that uses cancer cells’ metabolic preferences against them: it encourages the cells to consume so much glucose it makes them sick.

Their findings were published in Oncotarget. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Vulnerability to cocaine uncovered in adolescent mouse brains

Editor’s note: Guest post from Neuroscience graduate student Brendan O’Flaherty. Companion paper to the Gourley lab’s recently published work on fasudil, habit modification and neuronal pruning.

An Emory study has discovered why teenager’s brains may be especially vulnerable to cocaine. Exposure to small amounts of cocaine in adolescence can disrupt brain development and impair the brain’s ability to change its own habits, the study suggests.

Guest post from Brendan O’Flaherty

The results were published in the April 1, 2017 issue of Biological Psychiatry, by researchers at Yerkes National Primate Research Center.

Drug seeking habits play a major role in drug addiction, says senior author Shannon Gourley, PhD, assistant professor of pediatrics, psychiatry and behavioral sciences at Emory University School of Medicine and Yerkes National Primate Research Center. The first author of the paper is former Emory graduate student Lauren DePoy, PhD.

When it comes to habits, cocaine is especially sneaky. Bad habits like drug use are already very difficult to change, but cocaine physically changes the brain, potentially weakening its ability to “override” bad habits. Although adults are susceptible to cocaine’s effects on habits, adolescent brains are especially vulnerable.

“Generally speaking, the younger you are exposed to cocaine in life, the more likely you are to have impaired decision making,” Gourley says.

Shannon Gourley, PhD, in lab

To understand why adolescent brains are especially vulnerable to cocaine, the researchers studied the effects of cocaine exposure on how the mice make decisions about food.

“I think it’s pretty amazing that we can actually talk to mice in a way that allows them to talk back,” Gourley says. “And then we can utilize a pretty tremendous biological toolkit to understand how the brain works.”

Researchers injected adolescent mice five times with either saline or cocaine. Both groups of animals then grew up without access to cocaine. Researchers then trained the mice to press two buttons, both of which caused food to drop into the cage. Since both buttons rewarded the mice equally, the mice pushed each button half the time.

Over time, pushing the two buttons equally could become a habit. To test this, the researchers then played a trick on the mice. When one of the buttons was exposed, the researchers starting giving the mice food pellets for free, instead of rewarding them for button-pressing.

“What the mouse should be learning is: ‘Ah hah, wait a minute, when I have access to this button I shouldn’t respond, because my responding doesn’t get me anything,‘” Gourley says. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

The journey of a marathon sleeper

A marathon sleeper who got away left some clues for Emory and University of Florida scientists to follow. What they found could provide benefits for patients with the genetic disease myotonic dystrophy (DM) and possibly the sleep disorder idiopathic hypersomnia (IH).

The classic symptom for DM is: someone has trouble releasing their grip on a doorknob. However, the disease does not only affect the muscles. Clinicians have recognized for years that DM can result in disabling daytime sleepiness and sometimes cognitive impairments. At the Myotonic Dystrophy Foundation meeting in September, a session was held gathering patient input on central nervous system (CNS) symptoms, so that future clinical trials could track those symptoms more rigorously.

Emory scientists are investigating this aspect of DM. Cell biology chair Gary Bassell was interested in the disease, because it’s a triplet repeat disorder, similar to fragile X syndrome, yet the CNS mechanisms and symptoms are very different. In DM, an expanded triplet or quadruplet repeat produces toxic RNA, which disrupts the process of RNA splicing, affecting multiple cell types and tissues.

Rye at San Francisco myotonic dystrophy meeting. Photo courtesy of Hypersomnia Foundation.

Neurologist and sleep specialist David Rye also has become involved. Recall Rye’s 2012 paper in Science Translational Medicine, which described a still-mysterious GABA-enhancing substance present in the spinal fluid of some super-sleepy patients. (GABA is a neurotransmitter important for regulating sleep.)

In seven of those patients, his team tested the “wake up” effects of flumazenil, conventionally used as an antidote to benzodiazepines. One of those patients was an Atlanta lawyer, whose recovery was later featured in the Wall Street Journal and on the Today Show. It turns out that another one of the seven, whose alertness increased in response to flumazenil, has DM.

In an overnight sleep exam, this man slept for 12 hours straight – the longest of the seven. But an IH diagnosis didn’t fit, because in the standard “take a nap five times” test, he didn’t doze off very quickly. He became frustrated with the stimulants he was given and sought treatment elsewhere, Rye says. Lab Land doesn’t have all the details of this patient’s history, but eventually he was diagnosed with DM, which clarified his situation. Read more

Posted on by Quinn Eastman in Neuro Leave a comment

A push for reproducibility in biomedical research

Editor’s note: guest post from Neuroscience graduate student Erica Landis.

Neuroscience graduate student Erica Landis

Evidence is increasing that lack of reproducibility, whatever the cause, is a systemic problem in biomedical science. While institutions like the NIH and concerned journal editors are making efforts to implement more stringent requirements for rigorous and reproducible research, scientists themselves must make conscious efforts to avoid common pitfalls of scientific research. Here at Emory, several scientists are making greater efforts to push forward to improve scientific research and combat what is being called “the reproducibility crisis.”

In 2012, C. Glenn Begley, then a scientist with the pharmaceutical company Amgen, published a commentary in Nature on his growing concern for the reproducibility of preclinical research. Begley and his colleagues had attempted to replicate 53 published studies they identified as relevant to their own research into potential pharmaceuticals. They found that only 6 of the 53 publications could be replicated; even with help from the original authors. Similar studies have consistently found that greater than 50 percent of published studies could not be replicated. This sparked a period of great concern and questioning for scientists. It seemed to Begley and others that experimenter bias, carelessness, poor understanding of statistics, and the career-dependent scramble to publish contributes to a misuse of the scientific method. These factors contribute to what is now called the reproducibility crisis. In April 2017, Richard Harris published Rigor Mortis, a survey of the problem in preclinical research, which has kept the conversation going and left many wondering what the best solution to these issues could be. To combat the reproducibility crisis, Harris argues that funding agencies, journal editors and reviewers, research institutions, and scientists themselves all have a role to play.

Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

Exosomes as potential biomarkers of radiation exposure

Kishore Kumar Jella, PhD

Winship Cancer Institute postdoc Kishore Kumar Jella has been invited to speak at the NATO advanced research workshop BRITE (Biomarkers of Radiation In the Environment): Robust tools for Risk Assessment in Yerevan, Armenia, on 28-30 November, 2017. The workshop brings together leading international experts to evaluate currently and developing radiation biomarkers for environmental applications.

Jella works in the Departments of Biochemistry and Radiation Oncology under the direction of Professors William S. Dynan and Mohammad K. Khan. He will speak on “Exosomes as Radiation Biomarkers”. He will describe how radiation influences exosome production and how these exosomes influence the immune system. The work has applications both to radiation carcinogenesis and combination radio-immunotherapy.

Jella is supported in part by a grant from the National Aeronautics and Space Administration to Dynan.

Exosomes are nano-sized membrane-clothed capsules containing proteins and RNA that are thought to facilitate cell-cell communcation. They were previously implicated in the ability of cancer cells to influence healthy neighbor cells, and have also been proposed as anti-cancer therapeutic vehicles. Jella’s previous research on exosomes and radiation-induced bystander signaling was published in Radiation Research in 2014.

Posted on by Quinn Eastman in Cancer Leave a comment

Before the cardiologist goes nuclear w/ stress #AHA17

Exercise stress testing to diagnose heart disease has a long history. This year, cardiologists can celebrate the 50-year anniversary of a study connecting abnormal stress test results and obstructive coronary artery disease (CAD).

The basic stress test procedure can involve walking on a tilting treadmill as the heart is monitored via electrocardiogram. A variant called the nuclear stress test involves introducing a radioactive tracer into the body to visualize alterations in blood flow within the heart.

Some stress tests are considered inappropriate, leading to additional medical costs. Arshed Quyyumi and colleagues from Emory Clinical Cardiovascular Research Institute presented research on Sunday at the American Heart Association Scientific Sessions meeting on the use of a blood test along with an exercise stress test. First author Bryan Kindya is a 2017-18 internal medicine resident.

The blood test detects troponin, a sign of recent damage to the cardiac muscle. Very high levels indicate that someone is having a heart attack. As testing for troponin has become more sensitive in recent years, the implications of lower but still detectable troponin levels need to be backed up by follow-up outcomes. That’s what the Emory data can provide.

Quyyumi’s team found that more than 25 percent of CAD patients will have troponin levels below a certain cut-off (2.45 picograms per milliliter), predicting that they have a low risk of having heart problems during a stress test or adverse events (hospitalization/heart attack/death) over the next three years.

The researchers conclude that measuring troponin in CAD patients before embarking on stress testing “may provide major cost-savings.” Disclosure: the research was done in cooperation with Abbott Labs, the maker of the high-sensitivity troponin test.

Posted on by Quinn Eastman in Heart Leave a comment

Virus hunting season open

New viruses have been popping up in industrial water-cooling towers, in Antarctica and salty deserts. Erwin van Meir, from Winship Cancer Institute of Emory University, and his collaborators managed to find two inside someone’s metastatic tumor.

Working with Terry Fei Fan Ng and Eric Delwart from UCSF, Van Meir identified two new species of anellovirus, a family of viruses first discovered in the 1990s. The new viruses come from a patient with a melanoma that had metastasized to the brain and was operated on at Emory University Hospital.

The results were recently published in Oncotarget.

“We have no evidence that these two viruses were involved in the tumor’s formation, but the data are proof of principle that the metagenomics method used can discover more unknown viruses in human brain tumors,” Van Meir says.

Erwin Van Meir, PhD

Metagenomics is the study of genetic material obtained directly from the environment. The approach is often used to study bacteria, but it is equally valid for viruses. In this paper, investigators used enzymes to chew up human and bacterial DNA, enriching for viral DNA protected by the viral capsid.

Estimates from the USAID’s PREDICT program point to thousands or even millions of viruses, present in mammals and birds, which remain unknown to humans. According to Annual Review of Virology from this summer, Viruses with Circular Single-Stranded DNA Genomes are Everywhere! – and that includes Anelloviridae, for which there is “still no convincing direct causal relation to any specific disease.”

Anelloviruses are relatively primitive in that they do not encode a viral polymerase (the enzyme that copies DNA) and thus need to rely upon the host cell and replicate inside the nucleus. The new ones were named Torque teno mini virus Emory1 (TTMV Emory1) and Torque teno mini virus Emory2 (TTMV Emory2). The research team gave a nod to Emory by using its colors in the virus genome cartoons accompanying the publication. Read more

Posted on by Quinn Eastman in Cancer Leave a comment

#AHA17 highlight: cardiac pacemaker cells

At the American Heart Association Scientific Sessions meeting this week, Hee Cheol Cho’s lab is presenting three abstracts on pacemaker cells. These cells make up the sinoatrial node, which generates electrical impulses driving our heart beats. Knowing how to engineer them could enhance cardiologists’ ability to treat arrhythmias, especially in pediatric patients, but that goal is still some distance away.

Just a glimpse of the challenge comes from graduate student Sandra Grijalva’s late breaking oral abstract describing “Induced Pacemaker Spheroids as a Model to Reverse-Engineer the Native Sinoatrial Node”, which was presented yesterday.

Cho has previously published how induced pacemaker cells can be created by introducing the TBX18 gene into rat cardiac muscle cells. In the new research, when a spheroid of induced pacemaker cells was surrounded by a layer of cardiac muscle cells, the IPM cells were able to drive the previously quiescent nearby cells at around 145 beats per minute. [For reference, rats’ hearts beat in living animals at around 300 beats per minute.] Read more

Posted on by Quinn Eastman in Heart Leave a comment