A CRISPR way to edit DNA

It's not just for shuffling DNA in bacteria

C. difficile: its name says what it is

Highlighting an expert on the biology of a public health threat

Trend: epigenomics

EWAS is the new GWAS, but even more complex

A CRISPR way to edit DNA

The CRISPR/Cas gene editing system has a lot of buzz behind it: an amusingly crunchy name, an intriguing origin, and potential uses both in research labs and even in the clinic. We heard that Emory scientists are testing it, so an explainer was in order.

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) system was originally discovered by dairy industry researchers seeking to prevent phages, the viruses that infect bacteria, from ruining the cultures used to make cheese and yogurt. Bacteria incorporate small bits of DNA from phages into their CRISPR region and use that information to fight off the phages by chewing up their DNA.

At Emory, infectious disease specialist David Weiss has published research on CRISPR in some types of pathogenic bacteria, showing that they need parts of the CRISPR system to evade their hosts and stay infectious. Biologist Bruce Levin has modeled CRISPR-mediated immunity’s role in bacterial evolution.

What has attracted considerable attention recently is CRISPR/Cas-derived technology, which offers the ability to dive into the genome and make a very precise change. Scientists have figured out how to retool the CRISPR/Cas machinery – the enzymes that do the chewing of the phage DNA — into enzymes that can be targeted by an external guide.

For biologists in the laboratory, this is a way to probe a gene’s function by making an animal with its genes altered in a certain way. The method is gaining popularity here at Emory. Geneticist Peng Jin reports:

“CRISPR is much more efficient and quicker than traditional homologous recombination. One can directly inject the plasmid and guide RNA into mouse embryo to make knockout mice. You can also target multiple genes at the same time.”

The traditional method Jin refers to involves taking cultured embryonic stem cells, zapping DNA carrying a modified or disabled gene into them, and hoping that the cells’ repair machinery sews the DNA into the genome in the right way. Usually they have to use antibiotics and drugs to screen out all the cells where the DNA gets jammed into the genome haphazardly. Also, Jin adds that CRISPR/Cas technology can be used for whole-genome screens.

Tamara Caspary, a developmental biologist and scientific director of Emory’s transgenic mouse and gene targeting core, says she and her core team are in the process of developing and validating CRISPR, so that the technique could be accessible to many Emory investigators.

Potential clinical uses: Japanese scientists have proposed that CRISPR/Cas be employed against HIV infection. One can envision similar gene therapy applications.

Posted on by Quinn Eastman in Uncategorized Leave a comment

C. difficile: its name says what it is

If you’re looking for an expert on the “notorious” bacterium Clostridium difficile, consider Emory microbiologist Shonna McBride.

C. difficile is a prominent threat to public health, causing potential fatal cases of diarrheal disease. C. difficile can take over in someone’s intestines after antibiotics clear away other bacteria, making it dangerous for vulnerable patients in health care facilities. Healthcare-associated infections caused by other types of bacteria such as MRSA have been declining, leaving C. difficile as the most common cause, according to recently released data from the CDC.

Shonna McBride, PhD

McBride’s work focuses on how C. difficile is able to resist antimicrobial peptides produced by our bodies that keep other varieties of bacteria in check.

A 2013 paper from her lab defines genes that control C. difficile’s process for sequestering these peptides. It appears that its ability to resist host antimicrobial peptides evolved out of a system for resisting weapons other bacteria use against each other.

Since C. difficile requires an oxygen-free environment to grow, studying it can be more difficult than other bacteria. The McBride lab has a recent “video article” in the Journal of Visualized Experiments explaining how to do so using specialized equipment.

McBride explains in a recent Microbe magazine cover article that C. difficile’s ability to form spores is connected to the threat it poses:

Without the ability to form spores, the strict anaerobe C. diffıcile would quickly die in the presence of atmospheric oxygen. However, the intrinsic resilience of these spores makes them diffıcult to eradicate, facilitating the spread of this pathogen to new hosts, particularly in health care settings where they withstand many of the most potent disinfectants.

Yet the process of sporulation is markedly different in C. difficile compared with other kinds of bacteria, she says in the review.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Trend: epigenomics

Nature News recently described a trend noticeable at Emory and elsewhere. That trend is epigenomics: studying the patterns of chemical groups that adorn DNA sequences and influence their activity. Often this means taking a comprehensive genome-wide look at the patterns of DNA methylation.

DNA methylation is a chemical modification analogous to punctuation or a highlighter or censor’s pen. It doesn’t change the letters of the DNA but it does change how that information is received.

One recent example of epigenomics from Emory is a collaboration between psychiatrist Andrew Miller and oncologist Mylin Torres, examining the long-lasting marks left by chemotherapy in the blood cells of breast cancer patients.

Their co-author Alicia Smith, who specializes in the intersection of psychiatry and genetics, reports “EWAS or epigenome-wise association studies are being used in complex disease research to suggest genes that may be involved in etiology or symptoms.  They’re used in medication or diet studies to demonstrate efficacy or suggest side effects.   They’re also used in longitudinal studies to see if particular exposures or characteristics (i.e. low birthweight) have long-term consequences.” Read more

Posted on by Quinn Eastman in Uncategorized Leave a comment

A spoonful of sugar helps infection detection

Congratulations to Kiyoko Takemiya, a postdoctoral fellow in Emory’s Division of Cardiology, working with W. Robert Taylor. At the recent American College of Cardiology meeting in Washington DC, she won first place in the competition for an ACC Foundation/ Herman K. Gold Young Investigators Award in Molecular and Cellular Cardiology.

The title of her research presentation was: A Novel Imaging Probe for the Detection of Subclinical Bacterial Infections Involving Cardiac Devices.

Takemiya, Taylor, and their colleagues (including Mark Goodman and Niren Murthy, formerly at Georgia Tech and now at UC Berkeley) developed a fluorescent probe that allows the detection of small levels of bacteria on cardiac devices. The probe was tested in rats, some of which had relatively mild local S. aureus infections. The fluorescent probe (PET is also under investigation) makes use of the properties of maltohexaose, a sugar that is taken up by bacteria but not mammalian cells.

Infection rates for implantable cardiac devices such as pacemakers have been rising, according to a 2012 paper in NEJM.

Posted on by Quinn Eastman in Heart Leave a comment

Next-generation sequencing, amplified by social media

Emory Genetics Laboratory, with its whole exome sequencing business accelerating, is launching a new Medical EmExome product to provide clinicians with additional confidence and coverage. To go with this, EGL director Madhuri Hegde sent us some examples of recent diagnostic successes.

One of these was part of a paper that was recently published in the journal Genetics in Medicine: a young girl with multiple symptoms (developmental delay, movement disorder, digestive and breathing problems) was diagnosed with a new type of metabolic disorder, having inherited two mutated copies of the NGLY1 gene.

Two parents whose children were diagnosed with NGLY1 mutations have an interesting commentary in the same journal, describing how next-generation sequencing and social media went hand-in-hand. [this story was also on CNN.com as "Kids who don't cry"] Here is an excerpt from the parents’ essay:

Six of the eight patients presented in the accompanying article were linked together after parents, physicians, or scientists working on isolated cases searched online for “NGLY1.” They found a blog post describing the disorder written by the parents of the first confirmed patient. The blog chronicles the boy’s journey (initial evaluation, visits to multiple specialists, incorrect diagnoses, and ultimately the discovery of heterozygous mutations in NGLY1). It was this personal account that allowed the ordering physician, who had been tracking a second patient with NGLY1 variants, to feel confident that the two patients were suffering from the same disorder. Another patient was discovered, on a distant continent, when a parent’s Internet search for his/her child’s symptoms stumbled upon the aforementioned blog. This prompted the parents to suggest targeted NGLY1 sequencing to their child’s physician. Parent/patient-to-physician collaboration such as this is remarkable and is likely happening in other rare diseases with the advent of NGS.

As untrained people, we are not qualified to analyze whole-exome/whole-genome data. We cannot develop a therapeutic compound. We cannot design a diagnostic assay. That being said, parents can offer observations and ideas, and we can push for solutions. Nineteen months after the initial report by Need et al., five viable approaches to treatment are under active consideration, thanks to relentless digging by afflicted families…

Another case study Hegde sent us describes a baby that was born but died after just 10 days, unable to swallow and with poor muscle tone. During pregnancy, the mother had felt reduced fetal movement. For the baby, doctors ordered a variety of gene panels without finding abnormalities, but a muscle biopsy detected signs of congenital muscular dystrophy, type unknown. Whole exome sequencing was able to show that the baby’s disease came from inheriting two mutated forms of the RYR1 gene. Now the mother is pregnant again, and reports feeling lots of movement.

Posted on by Quinn Eastman in Uncategorized Leave a comment

Moreno: how Big Pharma is slowing cancer research

Winship Cancer Institute’s Carlos Moreno has a sharply written commentary on Reuters, whipping Big Pharma for footdragging on cancer drug discovery for patent/IP-related reasons. Check it out.

Read more

Posted on by Quinn Eastman in Cancer Leave a comment

Valproate: epigenetic solvent

Oncologist Johann Brandes and colleagues from Winship Cancer Institute have a recent study on the preventive effects of valproate, now prescribed for epilepsy and bipolar disorder, against head and neck cancer.

Published in Cancer, it was a clever example of number crunching, using data from the Veterans’ Administration. If you want to know about the anticancer effects of a widely used drug, check who’s already taking it for another reason (25,000 veterans were taking it). The results suggest that valproate – OR a drug that works with a similar mechanism – might be used to prevent head and neck cancer in patients who are at high risk. Also see this related paper from Brandes and colleagues on chemoprevention in lung cancer.

However, any examination of valproate should take into account neurologist Kim Meador’s work on antiepileptic drugs taken by pregnant women — he was at Emory for several years but recently moved to Stanford. His work with the NEAD study definitively showed that valproate, taken during pregnancy, increases the risk of birth defects and intellectual disability in children.

There’s even more about valproate: it might help tone-deaf adults learn to differentiate musical tones, according to one study. It has been used to enhance the reprogramming of somatic cells into induced pluripotent stem cells. It seems that valproate just shakes things up, turning on genes that have been off, erasing decisions that cells have already made.

Valproate is a tricky drug, with several modes of action: it blocks sodium channels, enhances the effects of the inhibitory neurotransmitter GABA, and inhibits histone deacetylases. Although the first two may be contributing to the antiepileptic effects, the last one may be contributing to longer-lasting changes. Histone deacetylases are a way a cell keeps genes turned off; inhibit them and you loosen things up, allowing the remodeling of chromatin and unearthing genes that were silenced.

In tumors, genes that prevent runaway growth are silenced. It may be that valproate is loosening chromatin enough to allow the growth control machinery to reemerge, although the effects observed in the Brandes paper are specific for head and neck cancer, and not other forms of cancer. The data suggest that valproate has a preventive effect with respect to smoking-related cancers and not viral-related cancers.

With adults at high risk of cancer recurrence, side effects from valproate may be more acceptable than in other situations. Even so, with follow-up research, it may be possible to isolate where the anticancer effects of valproate come from – that is, which histone deacetylase in particular is responsible – find a more specific drug, and avoid potential broad side effects.

Posted on by Quinn Eastman in Cancer, Neuro Leave a comment

Signs of future high blood pressure in college football players

College football players tend to have stiffer arteries than other college students, even before their college athletic careers have started, cardiology researchers have found.

Although football players had lower blood pressure in the pre-season than a control group of undergraduates, stiffer arteries could potentially predict players’ future high blood pressure, a risk factor for stroke and heart disease later in life.

Researchers studied 50 freshman American-style football players from two Division I programs, Georgia Tech and Harvard, in the pre-season and compared them with 50 healthy Emory undergraduates, who were selected to roughly match their counterparts in age and race. The research is part of a longer ongoing study of cardiovascular health in Georgia Tech college football players.

The results were presented Saturday at the American College of Cardiology meeting in Washington DC, by cardiology research fellow Jonathan Kim, MD. Kim worked with Arshed Quyyumi, MD, director of Emory’s Clinical Cardiovascular Research Institute, Aaron Baggish, MD, associate director of the Cardiovascular Performance Program at Massachusetts General Hospital, and their colleagues.

“It’s remarkable that these vascular differences are apparent in the pre-season, when the players are essentially coming out of high school,” says Kim. “We aim to gain additional insight by following their progress during the season.”

Despite being physically active and capable, more than half of college football players were previously found to develop hypertension by the end of their first season. Professional football players also tend to have higher blood pressure, even though other risk factors such as cholesterol and blood sugar look good, studies have found. Researchers have previously proposed that the intense stop-and-start nature of football as well as the physical demands of competitive participation, such as rapid weight gain, could play roles in making football distinctive in its effects on cardiovascular health.

In the current study, the control undergraduates had higher systolic and diastolic blood pressure than the football players: (football players: 111/63; control: 118/72). However, the football players displayed significantly higher pulse wave velocity, a measure of arterial stiffness (football: 6.5 vs control: 5.7). Pulse wave velocity is measured by noninvasive devices that track the speed of blood flow by calculating differences between arteries in the neck and the leg.

“It is known that in other populations, increased pulse wave velocity precedes the development of hypertension,” Kim says. “We plan to test this relationship for football players.”

The football players were markedly taller and larger than the control group (187 vs 178 centimeters in height, body mass index 29.2 vs 23.7). The football players also reported participating in more hours of weight-training per week than the control group (5.4 vs 2.6).

 

 

 

 

Posted on by Quinn Eastman in Heart Leave a comment

Molecular signature of heart attack predicts longer-term outcomes

A molecular signature seen in blood from patients who are experiencing an acute heart attack may also predict the risk of cardiovascular death over the next few years, Emory researchers have found.

The results were presented Monday at the American College of Cardiology meeting in Washington DC by cardiovascular research fellow Nima Ghasemzadeh, MD. Ghasemzadeh is working with Arshed Quyyumi, MD, director of Emory’s Clinical Cardiovascular Research Center, as well as Greg Gibson, PhD, director of the Integrative Genomics Center at Georgia Tech.

Ghasemzadeh and colleagues examined 337 patients undergoing cardiac catheterization at Emory. Just 18 percent of the patients in this group were having a heart attack. This research is a reminder that the majority of patients who undergo cardiac catheterization, and thus are suspected of experiencing a heart attack, are not actually having one at that moment. Read more

Posted on by Quinn Eastman in Heart, Uncategorized Leave a comment

Shoutout to Not a Mad Scientist

Cheers to microscopist and Winship Cancer Institute researcher Adam Marcus, who has started his own blog called “Not a Mad Scientist.” His first post talks about his educational outreach activities:

I have a super huge, somewhat tattered, and quite ugly suitcase that sits in my office.  This suitcase is not packed with clothes or extra large toiletries, but contains a pretty cool microscope, computer, and some shipping foam. Every few weeks I wheel it into the hallway, then into the elevator, and eventually into my car. The suitcase and I end up in Kindergarten-12th grade classrooms where I try to teach children something about science that they would not normally see.  I try to give them something different, something real, something scientific. I have seen over 3,000 children in about 200 classrooms in rural and urban schools, from pre-K to 12th grade…

We had a post in October about his lab’s research investigating Withania somnifera, a root used in Indian traditional medicine that contains potential tools for stopping breast cancer invasion and metastasis. Marcus’ blog has a collection of microscope movies, which we hope he will keep current.

Posted on by Quinn Eastman in Cancer Leave a comment
1 2 3 4 5 6 7 8 9 10 ... 45 46   Next »
  • Feedback

    Let us know what you think.

    You can contact us via the email button below or you can use our online feedback form You can also leave comments directly on individual posts.